Deep Model Based Transfer and Multi-Task Learning Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis

نویسندگان

  • Wenlu Zhang
  • Rongjian Li
  • Tao Zeng
  • Qian Sun
  • Sudhir Kumar
  • Jieping Ye
  • Shuiwang Ji
چکیده

A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Traditional methods used handcrafted local features combined with high-level image representations to generate image-level representations. Thus, a practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression patterns in Drosophila melanogaster, texture features based on wavelets were particularly effective for determining the developmental stages from in situ hybridization (ISH) images. Such image representation is however not suitable for controlled vocabulary (CV) term annotation because each CV term is often associated with only a part of an image. Here, we developed problem-independent feature extraction methods to generate hierarchical representations for ISH images. Our approach is based

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-task Dictionary Learning based Convolutional Neural Network for Computer aided Diagnosis with Longitudinal Images

Algorithmic image-based diagnosis and prognosis of neurodegenerative diseases on longitudinal data has drawn great interest from computer vision researchers. The current state-of-the-art models for many image classification tasks are based on the Convolutional Neural Networks (CNN). However, a key challenge in applying CNN to biological problems is that the available labeled training samples ar...

متن کامل

Multi-task learning with deep model based reinforcement learning

In recent years, model-free methods that use deep learning have achieved great success in many different reinforcement learning environments. Most successful approaches focus on solving a single task, while multi-task reinforcement learning remains an open problem. In this paper, we present a model based approach to deep reinforcement learning which we use to solve different tasks simultaneousl...

متن کامل

Deep Asymmetric Multi-task Feature Learning

We propose Deep Asymmetric Multitask Feature Learning (Deep-AMTFL) which can learn deep representations shared across multiple tasks while effectively preventing negative transfer that may happen in the feature sharing process. Specifically, we introduce an asymmetric autoencoder term that allows predictors for the confident tasks to have high contribution to the feature learning while suppress...

متن کامل

Task-based Metacognitive Instruction approach to Self-regulation in Listening Comprehension

Improving listening comprehension skill is one of the urgent contemporary educational needs in the field of second language acquisition and metacognitive strategies are proved to help learners manage and self-regulate their listening and overcome deficiencies. Although metacognitive instruction is underscored by previous research, task-based metacognitive instruction is seriously underresearche...

متن کامل

Subspace Network: Deep Multi-task Censored Regression for Modeling Neurodegenerative Diseases

Over the past decade a wide spectrum of machine learning models have been developed to model the neurodegenerative diseases, associating biomarkers, especially non-intrusive neuroimaging markers, with key clinical scores measuring the cognitive status of patients. Multi-task learning (MTL) has been extensively explored in these studies to address challenges associated to high dimensionality and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015